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Pushing the boundaries of speed

At Prognos, we regularly manage more than 45 billion 
lab data records. Additionally, we recently added 
pharmacy and medical claims data to our data lake 
— doubling the number of records and increasing the 
number of patients to more than 325 million. Our 
repository of data continues to grow with frequent 
updates from our existing data sources and the addition 
of new data sources. As the number of records grew, our 
requirements for how we manage this data also began 
to change. 

We had a clear vision of creating a platform to provide 
an interactive, real-time experience to answer complex 
healthcare questions using our apps, APIs and 
development environments. To create the platform we 
envisioned — one that automates data harmonization, 
linking, and data management while providing 
lightning-speed access to vast amounts of data — it 
needed to support a variety of personas interacting 
with the system from clinicians to data scientists to 
commercial end users. To support the development 
of this platform, which later became known as 
prognosFACTOR®, we first had to identify a healthcare 
data store to make our data accessible at web speeds 
with queries completed in less than one second. 

Searching for a “better” healthcare data store

At Prognos, we rely heavily on Apache Spark™ for 
many of our day-to-day operations. Historically Spark’s 
flexibility and power allowed us to tackle even the most 
challenging data tasks with ease. However, our work 
with Spark often required large clusters and hours of run 
time in order to get the information we needed. As we 
embarked on creating the prognosFACTOR platform, it 
was clear from the beginning that Spark would not meet 
our requirements for a scalable and interactive system 
for the platform. 

To meet our needs, we explored moving to a different 
technology stack. Our first consideration was open 
source online analytical processing (OLAP) technologies 

such as Apache Druid, ClickHouse and Apache Pinot. 
We were able to setup Druid and ClickHouse with our 
full datasets and ran some of our most common queries. 
While the speed improvements relative to Spark were 
significant, they failed to approach the sub-second 
requirement on complex queries. 

We also discovered other challenges. Due to the nature 
of the end user and the datasets, we were unable to 
make strict assumptions on the types of queries the 
platform will execute. By design, prognosFACTOR users 
have programmatic access to the data, which we were 
willing to develop if the technology didn’t support 
it. Yet even users who interact with the data through 
the apps (i.e. cohort designer), have access to a visual 
query builder interface creating the potential for many 
different ways to slice and dice the data. This made it 
challenging to fine-tune these OLAP technologies for 
pre-aggregations to achieve sub-second query times. 

In parallel, we experimented with graph databases. With 
a promise of fast query times, we tested AWS Neptune™. 
Despite our efforts to try various schemas to represent 
our data in graph form, we found that Neptune was slow 
to ingest data (taking days) and expensive. The cost grew 
unreasonable as we increased the size of the cluster to 
reach our performance requirements. 

The most promising technology — and the one that 
we went the furthest with — was Pilosa, an in-memory 
bitmap index. We created a set of indices for each field 
of our data (ex. lab test, drug, ICD code, etc.) where each 
bitmap in the set corresponded to a particular value 
in that field and each bit, or column, in the bitmap 
represented a patient. Pilosa allowed us to run set 
operations (ex. intersection, union, not) on these bitmaps 
in milliseconds. Using Pilosa, we were able to release a 
minimum viable product of a cohort designer for our 
internal users in just a few weeks.

Pilosa’s efficiency in slicing and dicing the data was not 
the only aspect that initially made it the core technology 
for our back-end. Pilosa is also light (i.e. a single binary), 
easy to set up and manage, and quickly ingests data. 

The Search for a “Perfect” Healthcare Data Store
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Birth of a new data store

Pilosa worked well for queries where we could ignore 
the temporal aspect of the data. Queries identifying 
patients based on a specific test, drug, or ICD in their 
history ran efficiently (in milliseconds) and required 
little effort because they aligned with the way Pilosa 
operates. However, when we wanted to limit the queries 
to a specific date range, the process became more 
involved, requiring us to keep bitmaps for different 
date granularity. In response we were able to change 
our schema to keep data at day-granularity which was 
enough to satisfy our querying requirements. 

This experience made it clear that we would need 
to extend Pilosa to run queries with relative time 
constraints. For example, finding all patients with a 
certain diagnosis followed by starting a certain drug 
within 90 days of that diagnosis. These types of queries 
are simply not suitable for bitmaps. In order to match 
complex patterns, we needed the full history of the 
patients, not just its compressed bitmap representation. 

To achieve this we decided to extend Pilosa with Redis, 
another open source in-memory technology. We 
posited that we could use Pilosa to identify the initial 
population from bitmaps and then utilize Redis with 
patients’ full history to determine the final population. 
While the initial experiments were effective, large 
queries required hundreds of millions of patient data 
points to be transferred back and forth between the 
two technologies. More importantly, we were not happy 
with the memory requirements of Redis. Unlike the 
memory efficiency of Pilosa, Redis required us to use two 
terabytes of RAM scattered around multiple large nodes. 
We eventually replaced Redis with our own simple 
key-value data store which allowed us to maintain data 
with one-fifth of the memory requirements. The same 
codebase later grew into a standalone data store we 
named FACTOR Logic™. 

As we built more healthcare specific query features in 
our new data store, our use for Pilosa was reduced to 
just its roaring bitmap library. We eventually decided to 

eliminate Pilosa from our technology stack and instead 
utilize roaring bitmaps directly in FACTOR Logic through 
open source libraries. Today roaring bitmaps remain one of 
the core technologies utilized in FACTOR Logic.

Patient-centric data analytics

Due to the unique nature of healthcare data, there are 
a number of the challenges in representing the data 
using conventional data technologies. At Prognos, one of 
our core competencies is working with patient-centric 
data. Our work typically involves looking for a pattern 
or applying a transformation by strictly looking at the 
historical data of a patient. While conventional data 
technologies provide general purpose features like data 
partitioning, they are not suitable for partitioning of 
patient data. Most data technologies support partitions 
in the order of thousands or tens of thousands. These 
partitioning systems fall apart when used to partition 
data of 300+ million patients. Since patient-centric 
analytics is at the core of what we do at Prognos, it was 
clear to us that we could not depend on common data 
partitioning technologies available in the industry. 

Using the same principles of healthcare data and the 
way we use this data, we can see that the queries can be 
easily and massively parallelized. Since analysis of one 
patient’s history has no dependency on that of another 
patient, we can implement raw concurrency without 
a synchronization mechanism that would hinder 
performance. This level of concurrency was not available 
in any of the technologies we reviewed, so we built it into 
the FACTOR Logic system.   

We designed FACTOR Logic such that the history of a 
particular patient can be accessed without a scan (i.e. 
zero look-up). All information related to a patient is 
stored in one continuous block in memory under that 
patient’s ID, providing a pure patient-centric storage 
mechanism. 

Moreover, investigating our use cases against our data 
revealed two distinct execution steps to our queries. The 
first step is identifying a population within the data sets 
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and the second step is performing various aggregations 
and transformations on the history of the identified 
population. Our analyses show that the first step requires 
the most resources. The second step, while much less 
resource intensive, is run multiple times to investigate 
different dimensions of the data. In order to support such 
use cases, healthcare analytics require fast, lightweight 
and dynamic views of data. To achieve our goals, we must 
be able to identify a population in a few seconds and then 
run various aggregations based on different dimensions of 
the same population.

FACTOR Logic is designed to detect queries that are 
running on the same population and is able to use the 
population that was identified as part of a previous query 
for future queries. These cached populations are kept in 
memory efficiently using roaring bitmaps and help to 
enhance the speed of the query.  

Roaring bitmaps

The versatility and suitability of roaring bitmaps for 
healthcare data make it a core technology in FACTOR 
Logic and, in general, for our work at Prognos. FACTOR 
Logic keeps major fields of the data as roaring bitmaps. For 
example, prognosFACTOR uses FACTOR Logic to keep the 
following bitmaps on de-identified data, mapping various 
aspects of the data to patients: 

Demographics - Gender, State, Birth Year
Lab Tests - Test Type, ICD
Rx/Medical Claims - Drug Name, ICD
Providers - NPI, Provider Specialty

These bitmaps allow FACTOR Logic to quickly identify 
patients who have a certain test, drug or diagnosis in their 
history without looking at their history. 

Each query first goes through a bitmap-only execution 
pipeline. This pipeline ignores certain aspects of the 
query such as date constraints, test values, and drug 
days-supply. The identified patients are then passed to a 
query interpreter that uses the full patient history with 
all its requirements to identify the final population. This 
population is then cached for future queries and passed to 
the analytics step. 

Relationships

Roaring bitmaps are also utilized to represent relationships 
between data, much like a graph database. For example, 
using bitmaps all patients associated with a provider can 
be identified through roaring bitmaps without  
data scanning. 

Similarly, due to the patient-centric nature of FACTOR 
Logic, all providers associated with a patient can be 
identified without scanning the data. That means FACTOR 
Logic can be used as an undirected graph database where 
the dimensions of the data are connected through patient 
nodes allowing us to, for example, explore the relationship 
between a particular lab test and a population of providers 
without scanning the data.  

Data compression

Considering the size of our data, it was essential that we 
find a way to store the data in-memory and optimize not 
just for its size, but also for speed. Performance concerns, 
again, ruled out general purpose in-memory compression 
algorithms. Instead we decided to store all values as 
unsigned integers (indices). 
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During ingestion, the FACTOR Logic translation store 
translates the data into a set of integers. All incoming 
queries are also translated into integers before execution. 
That means both the data and the query executor only 
deals with integer numbers, on which logical comparisons 
(ex. an equivalence check) are more efficient than, for 
example, strings. This not only reduced the size of the  
data in memory, but also increased the performance of  
our queries. 

To further optimize the size of the data in memory, each 
field specifies its own integer size. For example, fields like 
gender and state are represented using unsigned 8-bit 
integers, while larger cardinality fields such as provider NPI 
are represented as unsigned 32-bit integers. Dates in the 
records are also translated to “number of days since 2010” 
and kept as unsigned 16-bit integers. 

It should be noted that unstructured data (ex. free text 
fields) is not suitable for FACTOR Logic’s in-memory 
storage. Unstructured fields can be stored on disk and 
included as part of a query response, but currently  
FACTOR Logic does not provide any means to query 
unstructured data. 

FACTOR Logic Query Language (fLQ)

Data scientists, in general, are mostly familiar with SQL as 
the query language. The challenges with SQL and other 
conventional query languages are: 

1. �They are not easy to construct for healthcare questions. 
These query languages are designed for general purpose, 
relational or graph data. 

2. �They are not optimized for common and complex 
healthcare questions because the query language is not 
aware of distinct properties of the data. 

fLQ, a query language created by Prognos for FACTOR 
Logic, is an intuitive, simple to write and fast to execute 
query language specifically designed and optimized for 
complex healthcare questions. 

Here is a simple query we commonly deal with:

All patients who were diagnosed with X within the 
last 12 months; and started on drug Y within 60 days 
of diagnosis; and did not change their regimen since 
that time.

The new query language makes this and other healthcare 
questions easier to represent and efficiently executed. It 
would be represented as outlined below:

{
	 “predicate”:”SEQUENCE”,”contains”:[
	     {“predicate”:”ICD10”,”contains”:[“X”], 
	      �“start-date”:”2019-01-01”,”end-

date”:”2019-12-31”},
	     {“predicate”:”RX”,”contains”:[“Y”], 
		   “�time-relation”:”before”, “time-days”:60},
	     {“predicate”:”NOT”,”predicates”:[
	        {“predicate”:”RX”, “contains”:[“*”],
	         “�time-relation”:”before”, “time-days”:3650}]}]
}

The above example is a sequence query that lets the 
user explore the existence of a sequence of events in the 
patients’ history. Within a sequence query, predicates can 
be time constrained relative to the occurrence of previous 
events.

Within: Two events occurring within X days of  
each other where order does not matter.

Before: Event must occur within X days after  
the previous event. 

After: Event must occur at least X days after the  
previous event. 

Note that each predicate in the query can be constrained 
with specific absolute date ranges. This establishes an 
intuitive way to identify events within known dates.  

Sometimes we want to look for a set of events that are 
occurring relative to an index event. Event queries allow us 
to define an index event along with a set of must-have and 
must-not-have events, each of which are constrained to 
the index event with relative days where the index event is 
assumed to be day zero.  
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All patients who were diagnosed for the *first time* 
with X within the last 12 months; and started on 
drug Y within 60 days of diagnosis.

 {
	 “predicate”:”EVENT”,”contains”:[
	     {“predicate”:”ICD10”,”contains”:[“X”], 
	      “�start-date”:”2019-01-01”,”end-

date”:”2019-12-31”},

	     {�“predicate”:”MUST-NOT-HAVE”,”predicates”:
	        [�{“predicate”:”ICD10”, “contains”:[“X”]}],	
          “start-day”:-3650, “end-day”:-1}

	     {“predicate”:”MUST-HAVE”,”predicates”:
	        [{“predicate”:”RX”,”contains”:[“Y”]}],
          “�start-day”:0, “end-day”:60} 

]
}

We have built numerous predicate types and helpers to 
assist our teams to quickly and efficiently answer everyday 
healthcare analytics questions. These range from event-
transition queries that provide insights into pattern 
transitions to population-comparison queries to trend-
aggregation queries and more. A list of all predicate types 
and use cases are provided as part of FACTOR Logic query 
language documentation. 

Another advantage of fLQ is its structural design. A 
common FACTOR Logic query request contains two  
distinct parts:

1. �Using the provided pattern in the query (as outlined with 
examples above), identify a subpopulation

2. �Perform aggregations or analytics on the identified 
subpopulation

The first part is initially executed on bitmaps without 
looking at the actual records. Then the query is 
massively parallelized and executed over the identified 
subpopulation and cached for future aggregation or 
analytics requests.

Query optimization 

Each type of predicate requires a different amount of 
execution resources. The query optimization step would 
change the order of predicates to maximize efficiency of 
its overall execution. 

For example, a predicate related to the gender of a patient 
would execute much faster than a predicate that checks 
for the existence of a record within a specified date range. 
Filtering the patient based on gender would require a 
single lookup or comparison, while existence of a record or 
event within a given time period would require going over 
the event history of the patient. 

FACTOR Logic uses short circuiting on AND logic to speed 
up queries. As a result, when looking at the predicates 
inside AND logic gate, we first find the predicate that 
evaluates to false and can stop evaluating the rest of the 
predicates in that logic. Our query optimizer looks for 
predicates inside AND logic and orders the predicates that 
are expected to be executed faster, first in the query.  
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API interface and authentication
FACTOR Logic has a built-in restful API allowing the user 
to interact with the data over simple http requests. The 
user can load, query and maintain the data and control all 
FACTOR Logic features through its API interface.

An important consideration for any data technology 
is security. FACTOR Logic comes with a built-in 
authentication system, which can work with the users 
own user management system via JSON web tokens. 

Unlike most data technologies we regularly work with, it 
is extremely easy to deploy and maintain FACTOR Logic. 
It is a single executable binary, and once run, it can be 
managed through its API interface for administration, for 
logging and for linking with external services. This allows 
us to deploy FACTOR Logic for auto-scaling with ease. We 
can also containerize it with minimal configuration.

Programming language interface (PLI)

One of the common pain points with any data technology 
is that, however rare it might be, the user will come 
across cases where their needs do not align with how the 
technology operates. FACTOR Logic is a patient-centric 
data technology and, as such, most of its functionality 
operates around patients. That being said, it is common 
for our team to do physician-centric analysis, or require 
a custom pattern to match the patients that is either 
impossible or hard to represent with fLQ.

To address this, FACTOR Logic comes with its own native 
programming language interface (PLI) and interpreter 
through which the user can work with its in-memory data, 
bitmaps, and caches. The PLI allows the user to bypass the 
query language and interact with raw in-memory data 
directly. There are three ways to utilize the FACTOR Logic 
PLI. 

1. �Send the program to be executed through the “/
execute” API endpoint. 

2. �Include the program snippet in the query, where 
the snippet acts as a custom predicate. This method 
allows the user to embed custom logic at certain 
parts of the query. 

 
3. �Use FACTOR Logic workbench, which is a notebook-

like application that is deeply integrated with PLI. 

An important aspect of PLI is that it runs natively in the 
same process as the data and its interpreter is optimized 
for FACTOR Logic in-memory data structure. The user 
can take advantage of the same massive parallelization 
FACTOR Logic uses in the user’s own programs. FACTOR 
Logic enforces access control and safety measures but 
otherwise the code is running at near native speed, 
providing answers to even the most complex healthcare 
questions within seconds.  

Access control

Access rights play a major role in healthcare data 
management. Every record in our data registry comes 
with its own associated access rights. For each incoming 
request, FACTOR Logic query executor is allowed to access 
only the records it is authorized to use. 

FACTOR Logic will call the user’s access control service via 
a web hook through which the user can control access to 
data per request, per user, or per use case. Access control 
settings are cached by FACTOR Logic for 10 minutes to not 
to hinder query response performance of the server. 

A particular user’s access to data can be constrained 
based on dates on the record, the tags defined on the 
record, and/or the use case associated with the request. 
Any change to access-control metadata immediately 
takes effect within 10 minutes. 
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Unlike a conventional record-based access control 
on a relational database, FACTOR Logic needs to take 
a broader approach to how it implements access 
control. Because it is a patient-centric data store and 
a graph database, FACTOR Logic keeps track of more 
than just records, but also patients, providers, and their 
relationships. FACTOR Logic tracks and maintains the 
patients, providers, and records that each user is allowed 
to access so that it can provide answers without the 
overhead of access control. 

Deployment and ingestion

As the core technology behind prognosFACTOR, one of 
our primary goals is to make FACTOR Logic feature-rich 
yet simple and lightweight. We take advantage of the 
Golang (Go) echo framework where possible. In fact, 
FACTOR Logic is implemented fully in Go using libraries 
available in Go repositories. We version and then compile 
to a single binary, allowing it to be easily transferred to a 
target server system and launched in a matter of seconds. 

FACTOR Logic can ingest data at extremely high speeds. 
FACTOR Logic commonly ingests data from CSV files 
stored on AWS’s S3 service and can ingest data directly 
from S3 either in CSV or Parquet format. In our day-
to-day use at Prognos, FACTOR Logic ingestion rates 
consistently stay well above one million records per 
second per node range. That means we can load a 
brand new cluster from raw data files within a few 
hours. After the initial ingestion, FACTOR Logic servers 
are incrementally updated with new data periodically. 
FACTOR Logic is not designed for streaming real-time 
data. The FACTOR Logic clusters are typically set up for 
daily or weekly incremental updates.

While FACTOR Logic is an in-memory database, it does 
keep a snapshot of its state and data on disk. This allows 
us to quickly restart the server at the speed of transferring 
data from disk to memory. FACTOR Logic clusters can be 
scaled up and down, or failed nodes can be replaced in a 
timely manner with the help of the snapshots.

Memory and compute requirements

The resource requirements for FACTOR Logic are both 
CPU and memory bound. The amount of memory limits 
the amount of data that can be stored and the number 
of cores (clock-speed) impacts the speed at which the 
queries can be performed on the data. 

Depending on the number of records and the schema, 
FACTOR Logic is typically run on AWS EC2 instances 
(type R). It is standard to use a cluster where the data is 
distributed over four nodes, with a number of replicas 
that scale up and down based on the compute need.

Performance metrics

Test Server and Data
Number of patients: 351,198,746 

Number of records: 26,672,273,465 (lab records, Rx claims, 
medical claims)

Running on a two-node cluster of AWS EC2 r6g.metal (Total 
128 cores 1TB RAM)

FACTOR Logic v201029.1710 - Memory Utilization: ~750GB 
(data + pre-allocated query executors)

hL Ingestion

AW S3

Incoming
Ingest

Request
In-Memory
Storage

Data
Scanner

Data
Translation

	 QUERY	 RESPONSE TIME

Among diabetes patients, 
computing the frequency counts 
for the number of times a patient 
between the age of 60-69 is tested 
for HbA1c in the year following an 
observation of a record indicating a 
visit to an endocrinologist

Computing the frequency count of 
the number of days a patient had 
a supply of GLP-1 monotherapies 
in the year following initiation of 
therapy. Initiation of therapy is any 
fill of the drug up to one year after 
the index date. The Index date is 
dates where a patient is observed to 
satisfy the diabetes cohort criteria.

Computing distribution of the 
number of days diabetes patients 
maintain an uninterrupted supply of 
given therapy, defined as no gaps in 
availability of the therapy of longer 
than a 15-day grace period.
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2

3

650 milliseconds

 545 milliseconds
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Diabetes cohort criteria defined as those with E11* ICD 
code AND either Hemoglobin A1c/Hemoglobin.total in 
Blood OR Hemoglobin A1c/Hemoglobin.total in Blood by 
HPLC lab tests with value greater than 9. 

What is next for FACTOR Logic?

Interoperability: We aim to seamlessly integrate FACTOR 
Logic into the user’s workflow. The program currently 
supports Tableau and Databricks integrations so that our 
clients can continue to use the visualization and analytics 
capabilities they are accustomed to — but with results 
in seconds. We are currently working on expanding our 
capabilities for integration with Snowflake and Redshift. 

Speed and Scalability: As one of FACTOR Logic’s main 
differentiating factors, it is important for us to continue to 
push the boundaries of speed and performance. Our apps, 
visualizations, and queries are becoming increasingly 
complex, creating a growing need to interactively drive 
insights from our full registry. 

Deployment and Maintainability: Additionally, we are 
working on support for Kubernetes Administration 
through the built in app. Kubernetes is one of the most 
popular automated deployment systems used by our 
clients. FACTOR Logic Kubernetes support would allow 
our clients to integrate FACTOR Logic directly into their 
existing deployment, autoscaling and management 
workflow.    

To see the power of FACTOR Logic in action,  
explore the cohort builder.

Above are screenshots of the query results on prognosFACTOR’s 
Patient Journey application which is set up to directly call the single-
node test FACTOR Logic instance.
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