
1

The Search for a “Perfect” Healthcare Data Store

The Search for a “Perfect”
Healthcare Data Store
Building an Interactive Analytics Platform
for Big Healthcare Data

1

The Search for a “Perfect” Healthcare Data Store

Pushing the boundaries of speed

At Prognos, we regularly manage more than 45 billion
lab data records. Additionally, we recently added
pharmacy and medical claims data to our data lake
— doubling the number of records and increasing the
number of patients to more than 325 million. Our
repository of data continues to grow with frequent
updates from our existing data sources and the addition
of new data sources. As the number of records grew, our
requirements for how we manage this data also began
to change.

We had a clear vision of creating a platform to provide
an interactive, real-time experience to answer complex
healthcare questions using our apps, APIs and
development environments. To create the platform we
envisioned — one that automates data harmonization,
linking, and data management while providing
lightning-speed access to vast amounts of data — it
needed to support a variety of personas interacting
with the system from clinicians to data scientists to
commercial end users. To support the development
of this platform, which later became known as
prognosFACTOR®, we first had to identify a healthcare
data store to make our data accessible at web speeds
with queries completed in less than one second.

Searching for a “better” healthcare data store

At Prognos, we rely heavily on Apache Spark™ for
many of our day-to-day operations. Historically Spark’s
flexibility and power allowed us to tackle even the most
challenging data tasks with ease. However, our work
with Spark often required large clusters and hours of run
time in order to get the information we needed. As we
embarked on creating the prognosFACTOR platform, it
was clear from the beginning that Spark would not meet
our requirements for a scalable and interactive system
for the platform.

To meet our needs, we explored moving to a different
technology stack. Our first consideration was open
source online analytical processing (OLAP) technologies

such as Apache Druid, ClickHouse and Apache Pinot.
We were able to setup Druid and ClickHouse with our
full datasets and ran some of our most common queries.
While the speed improvements relative to Spark were
significant, they failed to approach the sub-second
requirement on complex queries.

We also discovered other challenges. Due to the nature
of the end user and the datasets, we were unable to
make strict assumptions on the types of queries the
platform will execute. By design, prognosFACTOR users
have programmatic access to the data, which we were
willing to develop if the technology didn’t support
it. Yet even users who interact with the data through
the apps (i.e. cohort designer), have access to a visual
query builder interface creating the potential for many
different ways to slice and dice the data. This made it
challenging to fine-tune these OLAP technologies for
pre-aggregations to achieve sub-second query times.

In parallel, we experimented with graph databases. With
a promise of fast query times, we tested AWS Neptune™.
Despite our efforts to try various schemas to represent
our data in graph form, we found that Neptune was slow
to ingest data (taking days) and expensive. The cost grew
unreasonable as we increased the size of the cluster to
reach our performance requirements.

The most promising technology — and the one that
we went the furthest with — was Pilosa, an in-memory
bitmap index. We created a set of indices for each field
of our data (ex. lab test, drug, ICD code, etc.) where each
bitmap in the set corresponded to a particular value
in that field and each bit, or column, in the bitmap
represented a patient. Pilosa allowed us to run set
operations (ex. intersection, union, not) on these bitmaps
in milliseconds. Using Pilosa, we were able to release a
minimum viable product of a cohort designer for our
internal users in just a few weeks.

Pilosa’s efficiency in slicing and dicing the data was not
the only aspect that initially made it the core technology
for our back-end. Pilosa is also light (i.e. a single binary),
easy to set up and manage, and quickly ingests data.

The Search for a “Perfect” Healthcare Data Store

2

The Search for a “Perfect” Healthcare Data Store

Birth of a new data store

Pilosa worked well for queries where we could ignore
the temporal aspect of the data. Queries identifying
patients based on a specific test, drug, or ICD in their
history ran efficiently (in milliseconds) and required
little effort because they aligned with the way Pilosa
operates. However, when we wanted to limit the queries
to a specific date range, the process became more
involved, requiring us to keep bitmaps for different
date granularity. In response we were able to change
our schema to keep data at day-granularity which was
enough to satisfy our querying requirements.

This experience made it clear that we would need
to extend Pilosa to run queries with relative time
constraints. For example, finding all patients with a
certain diagnosis followed by starting a certain drug
within 90 days of that diagnosis. These types of queries
are simply not suitable for bitmaps. In order to match
complex patterns, we needed the full history of the
patients, not just its compressed bitmap representation.

To achieve this we decided to extend Pilosa with Redis,
another open source in-memory technology. We
posited that we could use Pilosa to identify the initial
population from bitmaps and then utilize Redis with
patients’ full history to determine the final population.
While the initial experiments were effective, large
queries required hundreds of millions of patient data
points to be transferred back and forth between the
two technologies. More importantly, we were not happy
with the memory requirements of Redis. Unlike the
memory efficiency of Pilosa, Redis required us to use two
terabytes of RAM scattered around multiple large nodes.
We eventually replaced Redis with our own simple
key-value data store which allowed us to maintain data
with one-fifth of the memory requirements. The same
codebase later grew into a standalone data store we
named FACTOR Logic™.

As we built more healthcare specific query features in
our new data store, our use for Pilosa was reduced to
just its roaring bitmap library. We eventually decided to

eliminate Pilosa from our technology stack and instead
utilize roaring bitmaps directly in FACTOR Logic through
open source libraries. Today roaring bitmaps remain one of
the core technologies utilized in FACTOR Logic.

Patient-centric data analytics

Due to the unique nature of healthcare data, there are
a number of the challenges in representing the data
using conventional data technologies. At Prognos, one of
our core competencies is working with patient-centric
data. Our work typically involves looking for a pattern
or applying a transformation by strictly looking at the
historical data of a patient. While conventional data
technologies provide general purpose features like data
partitioning, they are not suitable for partitioning of
patient data. Most data technologies support partitions
in the order of thousands or tens of thousands. These
partitioning systems fall apart when used to partition
data of 300+ million patients. Since patient-centric
analytics is at the core of what we do at Prognos, it was
clear to us that we could not depend on common data
partitioning technologies available in the industry.

Using the same principles of healthcare data and the
way we use this data, we can see that the queries can be
easily and massively parallelized. Since analysis of one
patient’s history has no dependency on that of another
patient, we can implement raw concurrency without
a synchronization mechanism that would hinder
performance. This level of concurrency was not available
in any of the technologies we reviewed, so we built it into
the FACTOR Logic system.

We designed FACTOR Logic such that the history of a
particular patient can be accessed without a scan (i.e.
zero look-up). All information related to a patient is
stored in one continuous block in memory under that
patient’s ID, providing a pure patient-centric storage
mechanism.

Moreover, investigating our use cases against our data
revealed two distinct execution steps to our queries. The
first step is identifying a population within the data sets

3

The Search for a “Perfect” Healthcare Data Store

and the second step is performing various aggregations
and transformations on the history of the identified
population. Our analyses show that the first step requires
the most resources. The second step, while much less
resource intensive, is run multiple times to investigate
different dimensions of the data. In order to support such
use cases, healthcare analytics require fast, lightweight
and dynamic views of data. To achieve our goals, we must
be able to identify a population in a few seconds and then
run various aggregations based on different dimensions of
the same population.

FACTOR Logic is designed to detect queries that are
running on the same population and is able to use the
population that was identified as part of a previous query
for future queries. These cached populations are kept in
memory efficiently using roaring bitmaps and help to
enhance the speed of the query.

Roaring bitmaps

The versatility and suitability of roaring bitmaps for
healthcare data make it a core technology in FACTOR
Logic and, in general, for our work at Prognos. FACTOR
Logic keeps major fields of the data as roaring bitmaps. For
example, prognosFACTOR uses FACTOR Logic to keep the
following bitmaps on de-identified data, mapping various
aspects of the data to patients:

Demographics - Gender, State, Birth Year
Lab Tests - Test Type, ICD
Rx/Medical Claims - Drug Name, ICD
Providers - NPI, Provider Specialty

These bitmaps allow FACTOR Logic to quickly identify
patients who have a certain test, drug or diagnosis in their
history without looking at their history.

Each query first goes through a bitmap-only execution
pipeline. This pipeline ignores certain aspects of the
query such as date constraints, test values, and drug
days-supply. The identified patients are then passed to a
query interpreter that uses the full patient history with
all its requirements to identify the final population. This
population is then cached for future queries and passed to
the analytics step.

Relationships

Roaring bitmaps are also utilized to represent relationships
between data, much like a graph database. For example,
using bitmaps all patients associated with a provider can
be identified through roaring bitmaps without
data scanning.

Similarly, due to the patient-centric nature of FACTOR
Logic, all providers associated with a patient can be
identified without scanning the data. That means FACTOR
Logic can be used as an undirected graph database where
the dimensions of the data are connected through patient
nodes allowing us to, for example, explore the relationship
between a particular lab test and a population of providers
without scanning the data.

Data compression

Considering the size of our data, it was essential that we
find a way to store the data in-memory and optimize not
just for its size, but also for speed. Performance concerns,
again, ruled out general purpose in-memory compression
algorithms. Instead we decided to store all values as
unsigned integers (indices).

Roaring Bitmaps

Patient 1
Patient Info

Lab Records

Rx Records

Medical Records

Patient 2

n = 300 million m = 1.3 million

Patient Info

Lab Records

Rx Records

Medical Records

Patient n
Patient Info

Lab Records

Rx Records

Medical Records

Provider 1
Patient Info

Provider 2
Patient Info

Provider m
Patient Info

ICD

patients

1 0 1 0 1 0 0 0 1 1

1 0

1 0

1 2 3 4 5 6 7 8 n-1 n

1 1 1 0 0 0 1 0

1 0 1 0 0 0 0 0

DRUG METFORMIN

E08 & METFORMIN

[1, 3, . . . n-1]

E08

4

The Search for a “Perfect” Healthcare Data Store

During ingestion, the FACTOR Logic translation store
translates the data into a set of integers. All incoming
queries are also translated into integers before execution.
That means both the data and the query executor only
deals with integer numbers, on which logical comparisons
(ex. an equivalence check) are more efficient than, for
example, strings. This not only reduced the size of the
data in memory, but also increased the performance of
our queries.

To further optimize the size of the data in memory, each
field specifies its own integer size. For example, fields like
gender and state are represented using unsigned 8-bit
integers, while larger cardinality fields such as provider NPI
are represented as unsigned 32-bit integers. Dates in the
records are also translated to “number of days since 2010”
and kept as unsigned 16-bit integers.

It should be noted that unstructured data (ex. free text
fields) is not suitable for FACTOR Logic’s in-memory
storage. Unstructured fields can be stored on disk and
included as part of a query response, but currently
FACTOR Logic does not provide any means to query
unstructured data.

FACTOR Logic Query Language (fLQ)

Data scientists, in general, are mostly familiar with SQL as
the query language. The challenges with SQL and other
conventional query languages are:

1. �They are not easy to construct for healthcare questions.
These query languages are designed for general purpose,
relational or graph data.

2. �They are not optimized for common and complex
healthcare questions because the query language is not
aware of distinct properties of the data.

fLQ, a query language created by Prognos for FACTOR
Logic, is an intuitive, simple to write and fast to execute
query language specifically designed and optimized for
complex healthcare questions.

Here is a simple query we commonly deal with:

All patients who were diagnosed with X within the
last 12 months; and started on drug Y within 60 days
of diagnosis; and did not change their regimen since
that time.

The new query language makes this and other healthcare
questions easier to represent and efficiently executed. It
would be represented as outlined below:

{
	 “predicate”:”SEQUENCE”,”contains”:[
	 {“predicate”:”ICD10”,”contains”:[“X”],
	 �“start-date”:”2019-01-01”,”end-

date”:”2019-12-31”},
	 {“predicate”:”RX”,”contains”:[“Y”],
		 “�time-relation”:”before”, “time-days”:60},
	 {“predicate”:”NOT”,”predicates”:[
	 {“predicate”:”RX”, “contains”:[“*”],
	 “�time-relation”:”before”, “time-days”:3650}]}]
}

The above example is a sequence query that lets the
user explore the existence of a sequence of events in the
patients’ history. Within a sequence query, predicates can
be time constrained relative to the occurrence of previous
events.

Within: Two events occurring within X days of
each other where order does not matter.

Before: Event must occur within X days after
the previous event.

After: Event must occur at least X days after the
previous event.

Note that each predicate in the query can be constrained
with specific absolute date ranges. This establishes an
intuitive way to identify events within known dates.

Sometimes we want to look for a set of events that are
occurring relative to an index event. Event queries allow us
to define an index event along with a set of must-have and
must-not-have events, each of which are constrained to
the index event with relative days where the index event is
assumed to be day zero.

5

The Search for a “Perfect” Healthcare Data Store

All patients who were diagnosed for the *first time*
with X within the last 12 months; and started on
drug Y within 60 days of diagnosis.

 {
	 “predicate”:”EVENT”,”contains”:[
	 {“predicate”:”ICD10”,”contains”:[“X”],
	 “�start-date”:”2019-01-01”,”end-

date”:”2019-12-31”},

	 {�“predicate”:”MUST-NOT-HAVE”,”predicates”:
	 [�{“predicate”:”ICD10”, “contains”:[“X”]}],	
 “start-day”:-3650, “end-day”:-1}

	 {“predicate”:”MUST-HAVE”,”predicates”:
	 [{“predicate”:”RX”,”contains”:[“Y”]}],
 “�start-day”:0, “end-day”:60}

]
}

We have built numerous predicate types and helpers to
assist our teams to quickly and efficiently answer everyday
healthcare analytics questions. These range from event-
transition queries that provide insights into pattern
transitions to population-comparison queries to trend-
aggregation queries and more. A list of all predicate types
and use cases are provided as part of FACTOR Logic query
language documentation.

Another advantage of fLQ is its structural design. A
common FACTOR Logic query request contains two
distinct parts:

1. �Using the provided pattern in the query (as outlined with
examples above), identify a subpopulation

2. �Perform aggregations or analytics on the identified
subpopulation

The first part is initially executed on bitmaps without
looking at the actual records. Then the query is
massively parallelized and executed over the identified
subpopulation and cached for future aggregation or
analytics requests.

Query optimization

Each type of predicate requires a different amount of
execution resources. The query optimization step would
change the order of predicates to maximize efficiency of
its overall execution.

For example, a predicate related to the gender of a patient
would execute much faster than a predicate that checks
for the existence of a record within a specified date range.
Filtering the patient based on gender would require a
single lookup or comparison, while existence of a record or
event within a given time period would require going over
the event history of the patient.

FACTOR Logic uses short circuiting on AND logic to speed
up queries. As a result, when looking at the predicates
inside AND logic gate, we first find the predicate that
evaluates to false and can stop evaluating the rest of the
predicates in that logic. Our query optimizer looks for
predicates inside AND logic and orders the predicates that
are expected to be executed faster, first in the query.

Query
Response

Incoming
Query

k ≤ m ≤ n

Query
Translation

order
predicates
for efficient

query
execution

executes
the query
through

pure bitmap
operations

executes
the query
using full
patient
history

aggregates
records of
identified
patients

translates
numeric

identifiers
to equivalent

text values

Bitmap
Executor

Record
Executor

Query
Aggregator

Response
Translation

Query
Optimization

IDENTIFY POPULATION ANALYTICS

translates
query

identifiers
to numeric
equivalent

Query

Patient 1

0 01

Patient Info

Lab Records

Rx Records

Medical Records

Patient 3
Patient Info

Lab Records

Rx Records

Medical Records

Patient n-1
Patient Info

Lab Records

Rx Records

Medical Records

6

The Search for a “Perfect” Healthcare Data Store

API interface and authentication
FACTOR Logic has a built-in restful API allowing the user
to interact with the data over simple http requests. The
user can load, query and maintain the data and control all
FACTOR Logic features through its API interface.

An important consideration for any data technology
is security. FACTOR Logic comes with a built-in
authentication system, which can work with the users
own user management system via JSON web tokens.

Unlike most data technologies we regularly work with, it
is extremely easy to deploy and maintain FACTOR Logic.
It is a single executable binary, and once run, it can be
managed through its API interface for administration, for
logging and for linking with external services. This allows
us to deploy FACTOR Logic for auto-scaling with ease. We
can also containerize it with minimal configuration.

Programming language interface (PLI)

One of the common pain points with any data technology
is that, however rare it might be, the user will come
across cases where their needs do not align with how the
technology operates. FACTOR Logic is a patient-centric
data technology and, as such, most of its functionality
operates around patients. That being said, it is common
for our team to do physician-centric analysis, or require
a custom pattern to match the patients that is either
impossible or hard to represent with fLQ.

To address this, FACTOR Logic comes with its own native
programming language interface (PLI) and interpreter
through which the user can work with its in-memory data,
bitmaps, and caches. The PLI allows the user to bypass the
query language and interact with raw in-memory data
directly. There are three ways to utilize the FACTOR Logic
PLI.

1. �Send the program to be executed through the “/
execute” API endpoint.

2. �Include the program snippet in the query, where
the snippet acts as a custom predicate. This method
allows the user to embed custom logic at certain
parts of the query.

3. �Use FACTOR Logic workbench, which is a notebook-

like application that is deeply integrated with PLI.

An important aspect of PLI is that it runs natively in the
same process as the data and its interpreter is optimized
for FACTOR Logic in-memory data structure. The user
can take advantage of the same massive parallelization
FACTOR Logic uses in the user’s own programs. FACTOR
Logic enforces access control and safety measures but
otherwise the code is running at near native speed,
providing answers to even the most complex healthcare
questions within seconds.

Access control

Access rights play a major role in healthcare data
management. Every record in our data registry comes
with its own associated access rights. For each incoming
request, FACTOR Logic query executor is allowed to access
only the records it is authorized to use.

FACTOR Logic will call the user’s access control service via
a web hook through which the user can control access to
data per request, per user, or per use case. Access control
settings are cached by FACTOR Logic for 10 minutes to not
to hinder query response performance of the server.

A particular user’s access to data can be constrained
based on dates on the record, the tags defined on the
record, and/or the use case associated with the request.
Any change to access-control metadata immediately
takes effect within 10 minutes.

AWS Cognito pF AC Table

Patient nPatient 1

ACCESS CONTROL
Record
Access
Request

Authorized
Records

Patient Info

Lab Records

Rx Records

Medical Records

Patient Info

Lab Records

Rx Records

Medical Records

7

The Search for a “Perfect” Healthcare Data Store

Unlike a conventional record-based access control
on a relational database, FACTOR Logic needs to take
a broader approach to how it implements access
control. Because it is a patient-centric data store and
a graph database, FACTOR Logic keeps track of more
than just records, but also patients, providers, and their
relationships. FACTOR Logic tracks and maintains the
patients, providers, and records that each user is allowed
to access so that it can provide answers without the
overhead of access control.

Deployment and ingestion

As the core technology behind prognosFACTOR, one of
our primary goals is to make FACTOR Logic feature-rich
yet simple and lightweight. We take advantage of the
Golang (Go) echo framework where possible. In fact,
FACTOR Logic is implemented fully in Go using libraries
available in Go repositories. We version and then compile
to a single binary, allowing it to be easily transferred to a
target server system and launched in a matter of seconds.

FACTOR Logic can ingest data at extremely high speeds.
FACTOR Logic commonly ingests data from CSV files
stored on AWS’s S3 service and can ingest data directly
from S3 either in CSV or Parquet format. In our day-
to-day use at Prognos, FACTOR Logic ingestion rates
consistently stay well above one million records per
second per node range. That means we can load a
brand new cluster from raw data files within a few
hours. After the initial ingestion, FACTOR Logic servers
are incrementally updated with new data periodically.
FACTOR Logic is not designed for streaming real-time
data. The FACTOR Logic clusters are typically set up for
daily or weekly incremental updates.

While FACTOR Logic is an in-memory database, it does
keep a snapshot of its state and data on disk. This allows
us to quickly restart the server at the speed of transferring
data from disk to memory. FACTOR Logic clusters can be
scaled up and down, or failed nodes can be replaced in a
timely manner with the help of the snapshots.

Memory and compute requirements

The resource requirements for FACTOR Logic are both
CPU and memory bound. The amount of memory limits
the amount of data that can be stored and the number
of cores (clock-speed) impacts the speed at which the
queries can be performed on the data.

Depending on the number of records and the schema,
FACTOR Logic is typically run on AWS EC2 instances
(type R). It is standard to use a cluster where the data is
distributed over four nodes, with a number of replicas
that scale up and down based on the compute need.

Performance metrics

Test Server and Data
Number of patients: 351,198,746

Number of records: 26,672,273,465 (lab records, Rx claims,
medical claims)

Running on a two-node cluster of AWS EC2 r6g.metal (Total
128 cores 1TB RAM)

FACTOR Logic v201029.1710 - Memory Utilization: ~750GB
(data + pre-allocated query executors)

hL Ingestion

AW S3

Incoming
Ingest

Request
In-Memory
Storage

Data
Scanner

Data
Translation

	 QUERY	 RESPONSE TIME

Among diabetes patients,
computing the frequency counts
for the number of times a patient
between the age of 60-69 is tested
for HbA1c in the year following an
observation of a record indicating a
visit to an endocrinologist

Computing the frequency count of
the number of days a patient had
a supply of GLP-1 monotherapies
in the year following initiation of
therapy. Initiation of therapy is any
fill of the drug up to one year after
the index date. The Index date is
dates where a patient is observed to
satisfy the diabetes cohort criteria.

Computing distribution of the
number of days diabetes patients
maintain an uninterrupted supply of
given therapy, defined as no gaps in
availability of the therapy of longer
than a 15-day grace period.

1.25 seconds1

2

3

650 milliseconds

 545 milliseconds

8

The Search for a “Perfect” Healthcare Data Store

Diabetes cohort criteria defined as those with E11* ICD
code AND either Hemoglobin A1c/Hemoglobin.total in
Blood OR Hemoglobin A1c/Hemoglobin.total in Blood by
HPLC lab tests with value greater than 9.

What is next for FACTOR Logic?

Interoperability: We aim to seamlessly integrate FACTOR
Logic into the user’s workflow. The program currently
supports Tableau and Databricks integrations so that our
clients can continue to use the visualization and analytics
capabilities they are accustomed to — but with results
in seconds. We are currently working on expanding our
capabilities for integration with Snowflake and Redshift.

Speed and Scalability: As one of FACTOR Logic’s main
differentiating factors, it is important for us to continue to
push the boundaries of speed and performance. Our apps,
visualizations, and queries are becoming increasingly
complex, creating a growing need to interactively drive
insights from our full registry.

Deployment and Maintainability: Additionally, we are
working on support for Kubernetes Administration
through the built in app. Kubernetes is one of the most
popular automated deployment systems used by our
clients. FACTOR Logic Kubernetes support would allow
our clients to integrate FACTOR Logic directly into their
existing deployment, autoscaling and management
workflow.

To see the power of FACTOR Logic in action,
explore the cohort builder.

Above are screenshots of the query results on prognosFACTOR’s
Patient Journey application which is set up to directly call the single-
node test FACTOR Logic instance.

 © Prognos Health, Inc. 2020 | All Rights Reserved

Ali Koc, Vice President of
Engineering, leads the design,
development and adoption
of best-in-class and emerging
technologies at Prognos
Health. He recently pioneered
the development of the
prognosFACTOR platform and
the supporting technologies,
including FACTOR Logic. Ali
has led complex technology
projects across diverse industries

for more than a decade. He also teaches undergraduate and
graduate level courses in programming, databases, cloud
computing and big data at CUNY-Baruch College.

